Representing Relations Using Digraphs

•Obviously, we can represent any relation R on a set A by the digraph with A as its vertices and all pairs $(a, b) \in R$ as its edges.

•Vice versa, any digraph with vertices V and edges E can be represented by a relation on V containing all the pairs in E.

•This one-to-one correspondence between relations and digraphs means that any statement about relations also applies to digraphs, and vice versa.

Equivalence Relations

•Equivalence relations are used to relate objects that are similar in some way.

•**Definition:** A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

•Two elements that are related by an equivalence relation R are called equivalent.

Equivalence Relations

•Since R is symmetric, a is equivalent to b whenever b is equivalent to a.

•Since R is reflexive, every element is equivalent to itself.

•Since R is transitive, if a and b are equivalent and b and c are equivalent, then a and c are equivalent.

•Obviously, these three properties are necessary for a reasonable definition of equivalence.

Equivalence Relations

•Example: Suppose that R is the relation on the set of strings that consist of English letters such that aRb if and only if I(a) = I(b), where I(x) is the length of the string x. Is R an equivalence relation?

•Solution:

- R is reflexive, because I(a) = I(a) and therefore aRa for any string a.
- R is symmetric, because if l(a) = l(b) then l(b) = l(a), so if aRb then bRa.
- R is transitive, because if l(a) = l(b) and l(b) = l(c), then l(a) = l(c), so aRb and bRc implies aRc.
- •R is an equivalence relation.

•Definition: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a.

•The equivalence class of a with respect to R is denoted by [a]_R.

•When only one relation is under consideration, we will delete the subscript R and write [a] for this equivalence class.

•If $b \in [a]_R$, b is called a representative of this equivalence class.

•Example: In the previous example (strings of identical length), what is the equivalence class of the word mouse, denoted by [mouse] ?

•Solution: [mouse] is the set of all English words containing five letters.

•For example, 'horse' would be a representative of this equivalence class.

•Theorem: Let R be an equivalence relation on a set A. The following statements are equivalent:

- aRb
- [a] = [b]
- [a] \cap [b] $\neq \emptyset$

•Definition: A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union. In other words, the collection of subsets A_i,

 $i\!\in\!I$, forms a partition of S if and only if

(i) $A_i \neq \emptyset$ for $i \in I$

- $A_i \cap A_j = \emptyset$, if $i \neq j$
- $\cup_{i \in I} A_i = S$

•Examples: Let S be the set {u, m, b, r, o, c, k, s}. Do the following collections of sets partition S ?

 {{m, o, c, k}, {r, u, b, s}}
 yes.

 {{c, o, m, b}, {u, s}, {r}}
 no (k is missing).

 {{b, r, o, c, k}, {m, u, s, t}}
 no (t is not in S).

 {{u, m, b, r, o, c, k, s}}
 yes.

{{b, o, o, k}, {r, u, m}, {c, s}}

{{u, m, b}, {r, o, c, k, s}, 🛮

yes ({b,o,o,k} = {b,o,k}).

no (2 not allowed).

•Theorem: Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\{A_i \mid i \in I\}$ of the set S, there is an equivalence relation R that has the sets A_i , $i \in I$, as its equivalence classes.

•Example: Let us assume that Frank, Suzanne and George live in Boston, Stephanie and Max live in Lübeck, and Jennifer lives in Sydney.

•Let R be the equivalence relation {(a, b) | a and b live in the same city} on the set P = {Frank, Suzanne, George, Stephanie, Max, Jennifer}.

Then R = {(Frank, Frank), (Frank, Suzanne), (Frank, George), (Suzanne, Frank), (Suzanne, Suzanne), (Suzanne, George), (George, Frank), (George, Suzanne), (George, George), (Stephanie, Stephanie), (Stephanie, Max), (Max, Stephanie), (Max, Max), (Jennifer, Jennifer)}.

- •Then the **equivalence classes** of R are:
- •{{Frank, Suzanne, George}, {Stephanie, Max}, {Jennifer}}.
- •This is a **partition** of P.

•The equivalence classes of any equivalence relation R defined on a set S constitute a partition of S, because every element in S is assigned to exactly one of the equivalence classes.

•Another example: Let R be the relation $\{(a, b) \mid a \equiv b \pmod{3}\}$ on the set of integers.

•Is R an equivalence relation?

•Yes, R is reflexive, symmetric, and transitive.

•What are the equivalence classes of R ?